metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Jun-Ying Yang,^a Yun-Long Fu,^a Jia-Lin Ren^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Materials Science. Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.005 Å R factor = 0.037 wR factor = 0.081 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Calcium dipotassium tetraoxalatozirconate(IV) octahydrate

The Ca and Zr atoms in the title compound, poly[octaaquatetra-µ-oxalato-calciumdipotassiumzirconate(IV)], [CaK₂Zr- $(C_2O_4)_4(H_2O)_8$], are chelated by bridging oxalate groups to form a three-dimensional network; the two independent water-coordinated K atoms occupy the space within the network and also interact with the oxalate O atoms to result in eight-coordination for the K atoms. The title compound is isostructural with [CdK₂Zr(C₂O₄)₄(H₂O)₈] [Jeanneau, Audebrand & Louer (2002). J. Mater. Chem. 12, 2383-2389]. All the metal ions occupy special positions with $\overline{4}$ site symmetry.

Comment

In the crystal structure of cadmium dipotassium tetraoxalatozirconate octahydrate, $[CdK_{2}Zr(C_{2}O_{4})_{4}(H_{2}O)_{8}]$ (Jeanneau et al., 2002), the Ca, K and Zr atoms are all eightcoordinate. The Zr atom is chelated by the oxalate dianion, which also chelates to the Ca atoms; the ZrO_8 and CdO_8 polyhedra are linked through the bridging oxalate groups into a three-dimensional network encapsulating the potassium cations, which are also bonded to water molecules.

The replacement of cadmium by calcium leads to the isostructural calcium dipotassium tetraoxalatozirconate octahydrate, $[CaK_2Zr(C_2O_4)_4(H_2O)_8]$, (I) (Fig. 1); the Zr, Ca and K atoms all lie on different special positions of $\overline{4}$ symmetry. As modeled here, atom Zr1 lies on the Wyckoff 2a site and Ca1 on 2d, which is the opposite of the Jeanneau et al. (2002) model for Zr and Cd in $[CdK_2Zr(C_2O_4)_4(H_2O)_8]$, where a different origin was chosen.

The geometries of the Ca and Zr atoms in (I) are dodeca-© 2006 International Union of Crystallography hedral (Fig. 2). The two independent water-coordinated Received 22 August 2006 Accepted 29 August 2006

All rights reserved

6454 measured reflections 1302 independent reflections

 $R_{\rm int} = 0.046$ $\theta_{\rm max} = 27.4^{\circ}$

1199 reflections with $I > 2\sigma(I)$

Figure 1

View of a fragment of the network structure of (I), illustrating the coordination geometries of Zr, Ca and K. Displacement ellipsoids are drawn at the 70% probability level, and H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) 2 - x, 2 - y, z; (ii) y, 2 - x, -z; (iii) 2 - y, x, -z; (iv) 1 - x, 2 - y, z; (v) $y - \frac{1}{2}, \frac{3}{2} - x, \frac{1}{2} - z;$ (vi) $\frac{3}{2} - y, \frac{1}{2} + x, \frac{1}{2} - z;$ (vii) y, 2 - x, 1 - z; (viii) 2 - y, x, 1 - z; (ix) $y - \frac{1}{2}, \frac{3}{2} - x, \frac{1}{2} - z; (x) \frac{3}{2} - y,$ $\frac{1}{2} + x, -\frac{1}{2} - z.$

Figure 2

Dodecahedral geometries of Zr and Ca in (I), linked by a doubly chelating oxalate group. Symmetry codes as in Fig. 1.

potassium cations occupy the space within the framework to result in eight-fold coordination for them. The water molecules consolidate the structure through hydrogen bonds (Table 2), each water molecule forming two such bonds.

Experimental

Zirconium oxychloride hydrate, ZrOCl₂·H₂O (0.80 g, 2.5 mmol), oxalic acid (1.0 g, 8.0 mmol) and calcium chloride (0.05 g, 0.5 mmol) were dissolved in water (50 ml). Potassium hydroxide (2 M) was added dropwise (approximately 5 ml) until the solution registered a pH of 2. The clear solution was incubated at 323 K for 15 days. A small quantity of crystals of (I) was isolated in about 5% yield based on Zr.

Crystal data	
$[CaK_2Zr(C_2O_4)_4(H_2O)_8]$	$D_x = 2.042 \text{ Mg m}^{-3}$
$M_r = 705.71$	Mo $K\alpha$ radiation
Tetragonal, 14	$\mu = 1.18 \text{ mm}^{-1}$
a = 11.342 (1) Å	T = 293 (2) K
c = 8.920 (1) Å	Block, colorless
$V = 1147.56 (16) \text{ Å}^3$	$0.28 \times 0.20 \times 0.18 \text{ mm}$
Z = 2	

Data collection

Bruker APEX CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.681, \ T_{\max} = 0.816$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.081$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.05	$\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$
1302 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
83 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	603 Fridel pairs
	Flack parameter: -0.06 (8)

Table 1

Selected bon	d lengths	(A)).
--------------	-----------	-----	----

Zr1-01	2.234 (2)	K1-O1	2.882 (2)
Zr1-O2	2.175 (3)	K1 - O1w	2.866 (3)
Ca1-O3	2.404 (2)	K2-O4	2.789 (3)
Ca1-O4	2.521 (3)	K2 - O2w	2.886 (3)

Fable 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$D1w - H1w1 \cdots O3$	0.85	2.16	2.828 (4)	135
$O1w - H1w2 \cdots O2w^{i}$	0.85	2.19	2.901 (5)	141
$O2w - H2w1 \cdots O1w^{ii}$	0.85	2.16	2.893 (5)	144
$O2w - H2w2 \cdots O2^{iii}$	0.85	2.12	2.854 (4)	145

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{3}{2}$, $-y + \frac{5}{2}$, $z - \frac{1}{2}$; (iii) $-y + \frac{3}{2}$, $x + \frac{1}{2}$, $-z - \frac{1}{2}$.

The H atoms of water molecules were positioned geometrically (O-H = 0.85 Å) and were included in the refinement in the ridingmodel approximation, with their U_{iso} values fixed at 0.05 Å². The water molecules were rotated about their K-O bonds to best fit the electron density.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Bruker (2003). SAINT (Version 6.36A) and SMART (Version 6.36A). Bruker AXS Inc., Madison, Winsonsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Jeanneau, E., Audebrand, N. & Louer, D. (2002). J. Mater. Chem. 12, 2383-2389.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (1997). *SHELXL97* and *SHELXL97*. University of Göttingen, Germany.